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Abstract

The purpose of this paper is to describe a method for simulation of recently introduced

fluid stochastic Petri nets. Since such nets result in rather complex set of partial differential

equations, numerical solution becomes a formidable task. Because of a mixed, discrete and

continuous state space, simulative solution also poses some interesting challenges, which are

addressed in the paper.
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1 Introduction

Stochastic Petri nets provide a convenient and concise method of describing discrete-event

dynamic systems [1, 4, 6, 12, 15]. One of the difficulties encountered while using stochastic

Petri nets is that the underlying reachahility graph tends to be very large in practical prob-

lems. Drawing a parallel with fluid flow approximations in performance analysis of queueing

systems [3, 7, 11], SPNs have been extended to include fluid (or continuous) places where

fluid can be used to approximate a large number of discrete tokens. Armed with such Fluid

Stochastic Petri nets (FSPNs), we can also model physical systems that contain continuous

fluid-like quantities which are controlled by discrete logic.

Fluid stochastic Petri nets were introduced by IYivedi and Kulkarni in [14]. The original

model was considerably enhanced in [9]. The purpose of this paper is twofold: first we

further extend the formalism in [9] to make it more useful and, second, we explore the use

of simulation as a solution method for FSPNs. The extensions to the FSPN formalism we

prol)ose include:

• Fhfid impulses associated with both immediate and timed transition firings.

• Guards on immediate transitions, dependent on fluid levels, not just on the discrete

marking.

In the process of using simulation a.s a solution method, several innovations are needed.

In this direction, the contributions of this paper include:

• Generation of random deviates based on a non-homogeneous Poisson process.

• Interleaving of ODE solution for fluid places with simulation of discrete events in the

FSPN.

Definition of restrictions under which one can integrate the change of fluid levels using

built-in closed-from results, such as decoupled behavior and special classes of functions

for the fluid rates.

After introducing the FSPN model in the next section, we describe the method of sim-

ulation for the most general case in Section 3. The simplest case of uncoupled behavior of

different fluid places is taken up in Section 4 while two other cases are discussed in Sections

5 and 6, respectively. Examples are provided in Section 7.



2 Fluid stochastic Petri nets

Sets are denoted by' upper case calligraphic letters. In particular, ,_', "R, and _0 indicate

the natural, real, and nonnegative numt)ers, respectively.

For simplicity, we only address exponentially distributed firing times. Generally dis-

tributed firing times are clearly useful, and, in conneclion with discrete-event simulation,

might not add much complexity to the solution. However, the interruption policies (whal

hai)l)ens to the remaining firing time of transitions when one of them fires) can require very

complex definitions in full generality [5, 13]. This is not the case with the exponential distri-

1)ution, due to its memoryless property. If we assume that the firing rate of each transition,

if marking-dependent, is reevaluated in each marking where it is enabled, the time elapsed

since the transition first became enat)led does not affect the future evolution of the FSPN.

" ' N ("]DI) 7_(' "-]"TA fluid stochastic Petri net ( l"SP ) is a t,uple "7-1a,.f,.q, A,w, b, m °, x °)

where:

• 75,1) = {Pl .... , plrVl} a_.l _<' ---- {ql ..... ql_,l} are two (ti_ioiut and finite sets of places.

Let 7" = T 'D U 7 '_'. A (discrete) place p C 7)/) is drawn with a single circle and can

contain a number of tokens mp ¢ A'. A (continuous) place q C T 'c' is drawn with

two ('oncentric cir('h,s arid can contain a level of fluid x,_ C 7¢0. The marking, or

state, of the FSPN is givell by a pair of vectors descril)ing the contents of each place,

(m, x) C S = ,_,fl_'DI × "]_,0IP¢I. We call S tile "pot,e_tial state space", as oppose(l to

the "'actual state spa('e'" $ C_ ,S, the set of markings actually reachable during the

evolution of the FSPN. The marking (re, x) evolves ill time, which we indicate by v,

so, formally, we can lhink of it as a stochastic process {(m(r),x(r)),r > 0}.

• T T : {t_ ..... tl-rVl} and T 1 = {'u_ .... , .ul-r,i} are two disjoint and finite sets of transi-

tions. Let 7- = 7 -7, U 7 "1. ,'k (timed) transition t G T "r is draw, as a rectangle and has

an exponentially distribut(,(l [iring time. An (immediate) transition i C 7 -1 is draw,

as a thin bar and has a collstant zero firing time.

describe the marking-dependent cardinality (for discrete places) or the fluid impulse

(for continuous places) of the input and output arcs ('onnecting transitions and places.

We use the same symbol for l)oth, and we draw them arl thin al'cs with an arrowhead

on their (lestinatiou, si,ce the type of place elimiltates any possibility of confusion.

The function (leserilfillg a is written on the arc, tl_e (lel'aull is the constant one.



f . ((_c × T)U (7 × 76:)) × ,5 --+ 7_o describes the marking-dependent fluid rate of

the input and output arcs connecting transitious and continuous places. These fluid

arcs are drawn with a thick line, and an arrowhead on their destination. Also in this

case tile fimction is written on the arc and the default is the constant one.

g : T × S --+ {0, 1 } describes tile marking-dependent guard of each transition.

._ • T r x S --+ T_0 and w • T; x S --+ T_0 describe the marking-dependent firing rates

and weights of each transition.

b • T 'c' × A/'l_'q -+ T_0 tO{oc} describe the fluid bounds on each continuous place. This

bound has no effect when it is set to infinity. Note that b depends only on the discrete

part of the state space, ._ 'qPDI, not on ,5", to avoid the possibility of circular definitions.

(m °, x °) E ,-_ is the initial marking. Graphically, it. is represented by writing the value

0 0 inside the corresponding place. A missing value indicates zero. Forof nlp_ or Xq,

0 tokens inside the place, if this numberdiscrete places, it is also common to draw mp

is small.

The meaning of these quantities is given by the enabling and firing rules. We say that a,

transition t E T has concession in marking (m, x) iff

gp E pD, ap,t(m,x) <_ mp and gt(m,x) = 1.

If any immediate transition has concession in (m, x), it is said to be enabled and the marking

is said to be vanishing. Otherwise, the marking is said to be tangible and any timed transition

with concession is enabled in it. In other words, a timed transition is not enal)led in a

vanishing marking even if it has concession.

Some definitions of SPNs allow one to disable a transition t with concession in a marking

by speci_,ing a zero rate or weight for it;, or by introducing inhibitor arcs, drawn with a circle

instead of an arrowhead. Since we can represent these behaviors by an appropriate definition

of input arc cardinalities or of guards, we assume, without, loss of generality, that rates and

weights are positive for an enabled transition. Inhibitor arcs can then be considered merely

as a shorthand _.

_If, in (re,x), an inhibitor arc from p E pD (q E pc) to t E T has cardinality c E X (c E _0), t is

disabled if c _ my (c ___Xq). The same behavior can be modeled by ensuring that the guard gt evaluates t.o

0 i, (m, x).



Let ,5'(m, x) denote the set of enabled transitions in marking (m, x). Enabled transitions

change the marking in two ways. First, a transition t E T enabled in marking (m, x) can fire

after a random amount of time having distribution ,-- Expo(At(m, x)), and yield a (possibly)

new marking (m',x'). We then write (m, x)27(m ', x'), where

!

m,, = m v + at,p(m,x)- a/,,,(m,x)

x' = min{bq(m'), max{O, x,, + ,,, ,,(m, x) - aq,t(m, x)}}.

Second, fluid flows continuously through the arcs .f of enabled transitions connected to

continuous places. The potential rate of change of fluid level ['or the continuous place q C 5mC

in marking (m, x) is

l?_,'l

_q (m.x)= _ ft,,t(m,x)-.l_l,(m.x).
tE£(m,x)

However, the fluid lewq can never become negative or exceed the bound bq(m), so the (actual)

rate of change over time, r. while in marking (m, x), is

0 ifbq(m)=Oor

dxq ifxq = b_t(m ) and 51_°'(m,x) > 0 or

a,,(m,x) - dr - ifx v = 0 and @"(m,x) < 0 (1)

@"(m, x) otherwise

The stochastic evolutio, l of the FSPN in a tangible marking is governed t)y a race [2]:

the timed transition t with the shortest firing time is the one chosen to fire next. unless

it becomes disabled by some fluid levels reaching particular values that cause t to become

disabled prior to its firing. In a vanishing marking, instead, the weights are use(I to decide

which transition should fire: a,l i,umediate transition u enabled in marking (m, x)fires with

probability

w,,(m,x) (2)
E

u'E:(m,x)

3 General case

The FSPN definition we just gave is very powerful, but it allows one to describe models

whose solution can be quite difficult, even with discrete-event, simulation. Indeed, it can be

used to define FSPNs whose behavior is "unstable," as in lhe FSPNs of Fig. 1. In the model
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Ul _ u2

(Xq = O) (Xq > O) %=o) %>0)

Figure 1: FSPNs exhibiting unstable behaviors.

on the left;, immediate transitions ul and u2 alternatively put and remove a unit impulse

instantaneously. With few exceptions [8], such a behavior has been considered a modeling

error ill tile literature on discrete-state models. The instability of the model in the middle

is instead exclusive to models with a states having a continuous component, such as our

0 0, timed transition tl is enabled and timed transition t2 is disabled.FSPNs. When x_ =

However, as soon as the fluid arc starts adding fluid to q, the situation is reversed, tl becomes

disabled, while t2 becomes enabled and starts emptying q. It could be argued that, in such a

situation, q will always be empty, but any' model where an infinite number of events occurs in

a finite time (e.g., transitions tl and t2 become enabled an infinite number of times) cannot

be managed by conventional discrete-event simulation techniques. Hence, we will consider

such behaviors illegal.

The model on the right could be also considered unstable if F2 > F1. Both tl and t2 are

always enabled, hence there is a continuous flow into q at rate Fl due to tl. However, the

outgoing flow due to t2 cannot be I:2. Our definition simply states that aq is 0 in this case,

implying that the outgoing flow is effectively reduced to be F1, instead of F2, or, in other

words, the arc from q to t2 can be thought to have effect only a fraction FI/F2 of the time.

This type of behavior, however, can be easily managed by considering all the flows incident

to a continuous place, so we do not regard it as a true instability.

We now describe how to study a model with no unstable behaviors. Assume that we

have just entered tangible marking (m, x). If there is any enabled transition, each continuos

component Xq might vary in a very general way over time. Applying Eq. 1 to each q C pc, we

obtain a system of ordinary differential equations subject to the initial condition x(0) = x.

We can then consider two cases:

* In the simpler case, the cardinality of the arcs connected to discrete places and the

guards do not depend on x. Even so, the firing times behave as a nonhomogeneous

5



Poissonprocess(NItI'P) whoserate dependson tile continuousmarkiug, and so some

care is required in sampling tile firing instants. We assumethat the firing rate of
each transition t can be l)ounded from above by A_'(m), given our knowledge of its

dependence oll the fluid marking. That is, when the discrete marking is m, the rate of

t satisfies At(m, x) < A_'(m), for any' value of x that might be reached in conjunction

with m. We can therefore sample from the NHPP using the technique of "thinning"

[10], where we sample "potential firing instants" in accordance with a homogeneous

Poisson arrival l)rocess with rate

= AT(m).
tEC(m,x)

From this process, we can define a sequence of increasing time instants (rl,r2 .... ).

Starting from i = 1. we "'accept" ri, that is, we declare thal a firing occurred at time

ri, with probability A(m,x(Ti))/A'(m), where

A(m, x(ri)) = _ At(m, x(ri)).
tE_c(m,x)

In othe," words, we use the actual firing rates at time ri as a weight, to determine

whether the event corresponds to a true firing or not. This requires us to solve for

the value of x(rl ), by integrating the system of ordinary differential equations. If rl is

accepted, we stop. Otherwise, we integrate until r2, compute x(r2), and decide whether

to accept r2 or not, and so on. Eventually', this process stops at some step i, giving us

the actual firing time r / = ri.

For example, Fig. 2 illustrates the case where four transitions are enbaled in (m, x), Ii,

12, ta, and 14. The se(luence of numbered arrows shows the random deviates generated,

in order. First., we generate 7-l according to the distribution Expo(A'(m)). Then we

generate a random deviate -,_ Unif(0, A'(m)). In the figure, this happens to fall in

the interval corresponding to the "do not accept," case. Thus, we need t,o generate

another potential firing time by' sampling the distribution Expo(A'(m)) again and

summing the sampled value to rl, obtaining r2. We also need another random deviate

,-_ l;nif(0, A*(m)). which also, in the figure, happens to cause a r¢:jection. Finally,

we generate a third l)ot.ential firing time, r:_. When we sample ,-_ l!nif(0, A'(m)), we

obtain a value falling in the interval corresponding to t,. hence we schedule the firing

of t2 at time %. It is then apparent that the expected number or random deviates that

ueed to be generated is larger when the bounds At(Ill, X ) for the enabled transitions



donot accept

_ _tl(m,x('t:l))

_,t2(m,x('_l))

Xt3(m,x('_l))

_Lt4(m,x('cl))
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_'tl(m'x('t2)) /

( _Lt2(m,x(x2))(

<
( _'t3(m'x('g2)) (

( _t4(m'x('t2)) (

1
do

not accept 1

_'tl(m'x('_3)) (

_'t2(m'x(x3)) (

iLt3(m'x('l:3))(

_'t4(m'x('_3)) (

0 T1 '1:2 '_3= Tf

Time

Figure 2: Sampling tile NHPP process underlying a FSPN.

are less tight. On the other hand, if the rates of the enabled transitions axe a function

of x, but _tee(m,x) At(m, x) is a known constant, independent of x, only two deviates

are needed: the first one to decide rl and the second one to decide which transition to

fire.

If, instead, the set of enabled transitions can change as x evolves, we also need to

consider an "enabling event" at the time r _ when the first change in g(m, x) occurs.

The method to compute r e depends on the nature of the dependencies. In principle,

we should know the value of x(r) over the entire horizon r E [O,r:]. This can still

be a.cconlplished through integration. After (during) integration we need to find that

value of r * that first satisfies the given condition on the fluid levels. If there is no

minimum value r ' E [0, r f] for which the set of enabled transitions changes, the next

event to schedule is the firing at time r:. Otherwise, we must schedule an "enabling

event" at time r e.

In either case, if the firing rates of timed transitions are not dependent on fluid levels, the

generation of next firing times is considerably simplified because the machinery of NHPP-



basedgenerationof random deviates is avoided.

The processingof the scheduledeventcausesa changeof marking, from (m, x) to (m', x'),
where m' = m if tile event was of tile enabling type. Then, in marking (m',x'), a finite

sequenceof immediate firings might take place,just a.sill ordinary, non-fluid, SPNs,until

the next tangible marking (m",x") is reached.Thanks to the memorylessproperty of the
exponential distribution, the evolution of the FSPN from this point on is analogousto

the evolution from the initial marking, that. is, we do nol need to be concernedabout

the "remaining firing times" of transitions that werealreadyenabledprior to reachingthis

marking.

4 Uncoupled behavior

The general behavior just, described requires us to solve a system of ordinary differential

equations at each step of the simulation. This computation can be quite costly. A restriction

on the type of dependency allows us to uncouple the system, resulting in a set of ordinary

differential equations which can be solved independently. This requires that the fluid rates

incident on q, hence a,,(m,x), depend 01113, on (m, xq), not on the fluid levels in the other

continuous places:

!

V(m,x),(m,x') C 3, xq = xv => aq(m,x)= 5,_(m,x').

As in the general case, we can still distinguish whether the set, of enabled transitions <'an

be affected bv x or not, an<l the NIIPP random variate gel_eration must be used only if their

firing rates depend on x.

5 Predefined classes of behaviors

For particular cases of uncoupled dependencies, we can even have a built-in closed form

solution, which will avoid the need for numerical integration altogether. One such case is

when, in a given marking (m, x),

dx,,(r) _ .t(m)x,_(r) + B(m), .l(m) :_ 0
(iT

whose solution is

B(m)+ x_(0)+
x,,(r) - A(m) A(m)]



assuming that xq remains between 0 and bq(m) during [0, r]. This answers the question of

how nmch the fluid level in a place will change during the firing time r of a timed transition.

Inversely, the time rq when place q reaches a certain fluid level threshold Lq is given by

L B(m) \

In B(m)

rq = A( m ) '

if this quantity is positive (if it is negative, we can simply define % = oc, that is, the

threshold Lq cannot be reached in this marking).

If the set. of enabled transitions can only change when some place q reaches a threshold

lew'l Lq, then we can simply define the time r _ of the next enabling event as

r_= rain {rv}.
qET'('

When A(m) = 0, the solution is much silnpler,

dxq(r)
- B(m) _ x_j(r) = xq(O) + B(m)r,dr

again assuming that Xq remains between 0 and bq(m) during [0, r]. The time rq when place

q reaches the threshold L v is then

Lq - xq(0)

rq - B(m) '

if this quantity is positive, infinity otherwise.

6 Piecewise constant behavior

Complete dependency on the marking (m, x) is desirable in princit)le, but the complication

it entails is often excessive and its full power unneeded. A simpler type of dependency is

obtained by enforcing a discretization on the behavior of the FSPN with respect to the

continuous component x. This can be accomplished by defining a set of boolean threshold-

type conditions £ = {(r 1 (-)l l_),..., (rio I (-)lz;I llz:l)}, where rk E T 'c is a. continuous place,

,-:'a- C {<, 5, =, 2, >, =/:} is a comparison operator, and lk : N "I;'DI --+ R. U {oo} is a threshold

dependent on the discrete marking only. Hence, given a marking (m,x), we can define



the "discretized" marking (m,i) obtained through £, where i C {0, 1} Icl, and ik = 1 iff

x_k !-_k lk(m).

If we force a (for discrete places only), f, g, and ,_ to be defined on the discretized

marking (m, i), rather than on (m, x), then the behavior o[ l lw FSPN is constant until the

first threshold is encountered, oi' until a firing occurs.

Ilence, we can carry on a traditional discrete-event sinmlation, where the types of events

that need to be scheduled in the event, queue are either transition firings or the hitting of a

threshold.

Fortunately, there is no need to place the same restriction on tile fluid impulses (a for

continuous places) or w, since the impulses and the weights are always evaluated only at a

specific instant in time. Applying the restriction to these quantities as well would prevent us

from modeling usefifl behaviors, such as emptying a continuous place, or choosing between

two immediate transitions with l)robability proportional t,o the level in two continuous places.

7 Examples

We illustrate the power of the formalisin with a few examph,s.

7.1 A queue with impatient customers and breakdowns

Consider a queue with a server subject to breakdowns and repairs. The customers arriw_

with a, constant rate, an(t queue in an unbounded waiting room. They are served in first-

come-first-serve order, but, once their service starts, they can become impatient and leave

before comi)letion, see Fig. 3. 17nlike other system with impatienl customers, the amount of

time a customer has been in the queue before his service begins does not affect his decision

to leave. The arcs flom S_r_,i_q to Busy and from Wailiw t Io ldh are used to counl time

into the two places, hence they have fluid rate one. The arcs from Bu._y and Idle to ,g'_rvi'l_g

have impulse x_,, u and Xtdl, defined on them, respectively. Hence, they are "flushing" arcs,

they have the effect of emptying the two places immediately after the firing of ,q'crvin 9.

The guard of immediate transition Leave specifies when the ctlstomer at the head of the

queue decides to leaw_. Various policies can be easily' modeled:

• The total amount of time f,'om the moment service began exceeds a certain threshold

MAX. Then. we could define the guard gL_,, to 1)(" l]le boolean expression (xB,,.w +

Xldl_ = MAX).

10



Arrive

P,

_ave

/XBusy _ A

Se_ingJ t_7 _ "_(_

Customers __Up_)_Xldl, Busy

_Q_ F_ir eL
gLeave = ... _ _ _) Idle

Figure 3: The FSPN of a queue with impatient customers and breakdowns.

This policy is representative of situations where, once the server begins operating on

a customer, the operation must complete within a certain time, to avoid spoilage, etc.

• The total amomlt of time a customer has not; received any service from the moment

service began exceeds a certain threshold MAX. Then, gL,_,, = (Xld_ = MAX).

This could represent a similar situation, where, spoilage occurs only when tile customer

is not being served.

• A customer has waited for an uninterrupted period of time MAX without receiv-

ing any service. Then, gL,_ = (Xl_z, = MAX), after adding an an impulse arc

aB_,u,R_p_i_(na, x) = xB_,u, so that place Busy becomes empty after each repair.

This could represent a situation, where, in addition to occurring only when the cus-

tomer is not being served, any spoilage immediately disappears as soon as service

l'eSlUneS.

• A customer has spent more time waiting for the server to be operational than receiving

service, from the moment service began. Then, gz.,:,v_ = (xt_l_ > xB,,,u).

11



A measureof interest is the fraction of jobs that decide to leave:

number of firings of Leave up t.o time r

number of firings of Arrive up to time r

computed over a finite horizon, or in the limit for r -+ oc.

7.2 A dual-tank processing facility

C_onsider a processing plant where, during normal operation, a liquid enters a main tank,

O_e, from an external source with rate %,, and is used by a processing station, with a

(potential) rate ")o,,t > _i,,_, (see Fig. 4).

However, the processing station is subject to breakdowns during which it. cannol i)rocess

the liquid. Interrul)ting the flow from the external source of liquid into the main tank is an

expensive operation, hence, a second additional tank, 7'wo, is present. When the l)rocessing

station is down, the liquid is automatically routed to tank 7'wo. which has a maxinmnl

caI)acity bT, ..... Only when the second tank is full, the flow fl'om the external source is shut

down. After a. repair, the processing Call resume and the liquid is routed again from the

external source, which is restarted if it had been shut down. into tank One. hi addition, any

liquid ill tank Two is pumped into tank One, with rate 312. If %, + 312 > "_o_,t, the level

in tank One will increase while the processing station is working to catch up after a rel)air.

Since tank One has a. maximum capacity,', bo,_, the flow flom tank Two to tank One:, rather

than the flow from the external source, is slowed down when this limit is reached. The guard

(in the FSPN of Fig. 5) g.,x'f_,. = (xo,_ < bo,_) a.cconlplishes this.

The main reason for having two tanks, instead of a single large one, is efficiency. As the

liquid needs to be maintained at a given telnl)erature, tank O,t_ is constantly heated, while

tank Two is heated only when it contains li(tuid, i.e., during a breakdown. Indeed, the two

measures we are intereste(t in computing are:

number of firing of 5lavl IIl) to time 7-

T

the frequency at which the external source needs to go tll,ough a start-stop cycle, and

probal)ility that tank Two is not em[)l.y at lime r,

again, either for a finite r or in the linlit for 7- --+ oc.

12



 ankTZZL ankTwo One

• T_[in

Processing
Station

Figure 4: A dual-tank processing facility.

l

"_ F] Fill _ One . R r r_

__ I Xfer up,Stop mOown_[in "fer_ /____P

(XTwo=bTwo) k(XOne<bone)_-_// F__ ail

Figure 5: The FSPN of the dual-tank processing facility.

8 Conclusion

In this paper we have extended the power of recently introduced fluid stochastic Petri nets.

Since equations characterizing the evolution of such FSPNs are a. coupled system of partial

differential equations, tile generation and solution of these equations can become intractable

except for small or very well structured FSPNs. Hence, discrete-event simulation becomes

an important avenue for the solution of FSPNs. Because of mixed, discrete and continuous

state space with heavy interactions between them, simulation also poses some challenges.

1:3



Someof tile challengesareaddressedin the paper. Actual implementation (currently in

progress)of an FSPN simulator will undoubtedly revealother problems.
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